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A concerted survey is presented of the existing theories for predicting the strength and modulus 
of particulate-filled polymeric composites. The macroscopic behaviour of particulate com- 
posites is affected by the size, shape, and the distribution of the inclusions. The interfacial 
adhesion between the matrix and inclusion is also important. The limitation of theoretical 
models in describing these parameters and expressing the experimental data on the macro- 
scopic behaviour is demonstrated. 

1. I n t r o d u c t i o n  
This review has been prompted by a renewed interest 
in the engineering application of particulate-filled 
materials. Addition of rigid particles to polymers or 
other matrices can produce a number of desirable 
effects; for example an increase in stiffness, a reduction 
in the coefficient of thermal expansion and an improve- 
ment in creep resistance and fracture toughness. The 
modulus of a filled resin results from a complex inter- 
play between the properties of the individual con- 
stituent phases; the resin, the filler and the interfacial 
region. It is evident that the mechanical properties of 
the composite are affected by a number of parameters; 
the size, shape, aspect ratio and distribution of the 
reinforcing particles. In the case of non-spherical 
particles, the degree of orientation with respect to the 
applied stress is also important. This review will 
discuss how these parameters affect the experimen- 
tally observed macroscopic mechanical behaviour of 
particulate-filled polymers. 

In the scientific literature a number of theories and 
equations have been developed to describe these 
phenomena but we have chosen to select for discus- 
sion those which best represent the experimental data. 
The limitation of these theoretical models will also be 
considered. 

2. Modulus of particulate composites 
The reinforcing effect of particles in polymeric 
materials was first recognized for rubber compounds. 
This arose from the development of an understanding 
of structure property relationship for carbon black- 
filled natural rubber. The viscous component of the 
viscoelastic properties, meant that the enhancement in 
modulus was considered to be analogous to increases 
in viscosity. 

2.1. The theory of rigid inclusions in a 
non-rigid matrix 

2. 1.1. The Einstein equation 
One of the earliest theories for a composite system was 
developed for elastomers and is based on Einstein's 
equation for the viscosity of a suspension of rigid 
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spherical inclusions [1] 

~c = /~m( 1 -1- KEVp)  (1) 

where t/c and ~m are the viscosity of suspension and the 
matrix, respectively. K z is the Einstein coefficient 
which is equal to 2.5, for spheres. Vp is the volume 
fraction of particulate inclusions. It has been assumed 
[2-4] that Equation 1 also holds for changes in the 
modulus (i.e., ~]c/~m = 

shear modulus can be 
Gc/Gm), so that Equation 1 for 
written 

G c = Gm(1 ~- 2.5Vp) (2)  

G is the shear modulus and p, m and c refer to particle, 
matrix and composite, respectively, throughout. For 
Einstein's equation (Equation 2), the stiffening action 
of a filler is independent of its size. The equation 
also implies that it is the volume occupied by the filler, 
not its weight, which is the important variable. This 
equation has only proved useful for low concentrations 
of filler because on increasing the volume fraction of 
filler the flow or strain fields around particles interact. 
The difficulties associated with defining these inter- 
actions lead to several modifications of Equation 2. 
The best is due to Mooney [5]. Equation 3 agrees with 
Einstein's equation at low volume fractions and rep- 
resents the experimental data at higher volume 
fractions, the equation can be put into the form 

( 25v  ) 
G c --= G m exp 1 --- -S-Vp J (3) 

where S is the crowding factor (volume occupied by 
the filler/true volume of the filler). For close packed 
spheres S = 1.35. For non-spherical particles, the 
Mooney equation was subsequently modified accord- 
ing to Brodnyan [6] 

Gc = Gmexp(  2.5Vp + O'407(p- ~ sg-p (4) 

where p is the aspect ratio of the particle 1 < p < 15. 
Guth [7] generalized the Einstein concept by intro- 

ducing a particle interaction term and showed that 
Equation 2 could be written in the form 

Gc = Gm(1 4- KEVp 4- 14.1V 2) (5) 
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He further assumed that the change in the elastic 
constant of the rubber by embedded spheres is entirely 
analogous to the theory of viscosity. When a rubber- 
carbon black suspension is stretched, the suspended 
particles perturb the stresses and strains set up in the 
body. This gives rise to an increase in elastic energy 
and therefore an increase in elastic constant. For 
spherical particles Equation 5 can be analogously 
written for E as 

Ec = Era(1 + KEVp + 14.1V~) (6) 

For non-spherical particles he obtained 

Ec = Em(1 -+- 0.67pVp + 1.62p 2 Vp 2) (7) 

assuming p >> 1. 
For non-spherical particles, the shape factor, p was 

defined as the ratio of particle length to width. Other 
attempts at predicting Ec have been largely empirical 
using variable constants to fit the theoretical curve to 
the experimental data. 

2. 1.2. The Kerner equat ion 
One of the most versatile and elaborate equations for 
a composite material consisting of spherical particles 
in a matrix, is due to Kerner [8]. For Gp > Gm, the 
Kerner equation simplifies to 

Vp 15(1 -_ Vm)X~ 
G c = G m 1 --1- Vm ~-~ ~ l O V m ) ]  (8) 

where v m is the Poisson ratio of the matrix. 
The equation has been modified [9-12] and the 

general form is given by Nielsen [12] 

1 + ABVp (9) 
M = Mm 1 __ BcSVp 

where function Ba is dependent upon the particle 
packing fraction and M the modulus which may be for 
shear, elastic or bulk. The constant A accounts for 
factors such as the geometry of the filler and the 
Poisson ratio of the matrix. B accounts for the relative 
moduli of filler and the matrix phases. 

In general, it is assumed that changes in relative 
viscosity with filler content will parallel the increase in 
modulus [2-4, 7]. Equation 3 is rewritten for elastic 
modulus and compared with the Kerner equation for 
Vrn = 0.39 and S = 1.35 in Fig. 1. The Mooney 
equation predicts considerably more reinforcing action 
than the Kerner equation, and a modulus that tends to 
infinity at high volume fraction of filler. The equation 
assumes that Vm = 0.5 and that the modulus of the 
filler is infinitely greater than the matrix, both of 
which are not correct for a rigid matrix thus restricting 
the applicability of such models to filled rigid thermo- 
setting polymeric matrices. 

2.2. The theory of rigid inclusions 
in a rigid matrix 

The random distribution of the constituent phases in 
a filled system demands a statistical approach, but 
this requires a knowledge of the distribution of the 
individual phases. Consequently, the problem has 
been simplified to a two-phase model in which average 
stresses and strains are considered to exist in each of 
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Figure ! Theoretical predictions for the modulus of a particulate 
composite as a function of volume fraction. Curve 1 shows the 
Kerner equation v m = 0.39 and curve 2 shows the Mooney equation 
for S = 1.35. Both curves were plotted with E m = 3.gGPa. 

the phases. The average behaviour of the composite is 
defined in terms of a representative volume element. 
When subjected to a gross uniform stress or strain, a 
uniform strain field is induced in the composite which 
can be used to estimate the elastic constant [4, 13, 14]. 
The other approaches consist of the establishment of 
bounds for the moduli by use of energy criteria in 
elasticity theory [15]. 

2.2. 1. The series and  parallol m o d e l s  
In the simplest possible case for a two-phase material, 
the phase arrangement is shown in Figs 2a and 2b. For 
the case of parallel arrangement (a), the uniform strain 
is assumed in the two phase, the upper bound is given 
by [16] 

E c = Epgp q- E m g  m (10)  

whereas in series arrangement of case (b) the stress 
assumed to be uniform in the two phases, the lower 
bound is 

Eo = EpEm (11) 
EpVm + EmVp 

Equivalent models for concrete systems were pro- 
posed by Hansen [3], and Kaplan [17]. 

For Equation 10 it is assumed that the Poisson 
ratios of constituent phases are equal. Whereas for 
Equation 11 vo will be given by 

(Vp VpE m + Ym VmEp) 
v c = (12) 

(EmVp + EpVm) 

The bounds obtained from Equations 10 and 11 given 
in Fig. 3 as curves 1 and 2, respectively, are widely 
spaced and often unable to represent the experimental 
data. This implies that the assumption of either a state 
of uniform strain or uniform stress in the individual 
phases of the filled system is not sufficient to describe 
the modulus. 

2.2.2. The Hashin and Shtrikman model 
Improved bounds for the modulus of two-phase 
media were obtained by Hashin and Shtrikman who 
took into account the Poisson contraction of the 
constituent phases [14]. The overall response of the 
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composite was assumed to be isotropic and linearly 
elastic. The equations for the lower and upper bounds, 
respectively, are given in Equations 13 and 14 

respectively; when x = 0 Equation 16 reduces to 
Equation 11 which can be identified with a poorly 
bonded filler. For the perfectly bonded filler, when 

= 
+ 

[1/(Kp - Km) ] + [3Vm/(3K m + 4Gm)] Gm 

( ,p )( 
3 Km+ [1/(Kp - Kin)] + [3Vm/(3Km + 4Gm)l + Gm 

+ [1/(Gp - Gm)] + [6(Kin + 2Gm)Vm/5(3Km + 4Gm)G~] 

[1/(Gp - Gm)] + [6(Kin + 2Gm)Vm/5(3Km + 4Gm)Gm] 

E~ = 
( )( 9 Kp + [1/(Kin Kp)] + [3Vp/(3Kp + 4Gp)i ap + 

+ 

[1/(Gm - Gp)] + [6(Kp + 2Gp)Vp/5(3Kp + 4Gp)Gp 

(13) 

( )( 3 Kp + [1/(Kin - Kp)] + [3Vp/(3Kp + 4Gp)] + Gp + ) [1/(G m --  Gp)] 4- [6(Kp + 2Gp)Vp/5(3Kp + 4Gp)Gp] 
(14) 

K and G are the bulk and shear moduli and m and p 
refer to matrix and particle, respectively. The Poisson 
ratio of the composite is given by 

3Kc - 2G~ 
(15) 

vc - 2(Go + 3Kc) 

The separation of the Hashin upper and lower bound 
are dependent upon the modular ratio of particle to 
the matrix (m = Ep/Em). When the moduli of the 
constituent phases are closely matched, the bounds 
predict values within 10%. In the case of a rigid 
polymeric-filled system where m is approximately 20 
the bounds given by Equations 13 and 14, respectively, 
given as curves 3 and 4 in Fig. 4, are still widely spaced 
and therefore of limited predictive value. The Hashin- 
Shtrikman bounds (curves 3 and 4, Fig. 4), however, 
serve as a useful test of the approximate theories, since 
any solution outside these bounds must be regarded 
invalid. 

2.2.3. 7he Hirsch mode/  
Hirsch [18] proposed a relation for Ec, which is a 
summation of Equations 10 and 11 

Ec = x ( G G  + EmVm) 

-~- (1 -- X) EpEm (16)  
(Ep Vrn -]- EmVp) 

The model is illustrated in Fig. 2c. The parameters x 
and 1 - x are the relative proportions of material 
conforming to the upper and lower bound solutions, 
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Figure 2 Models for particulate-filled composites. (a) Parallel (con- 
stant strain) model, (b) series (constant stress) model, (c) Hirsch's 
model, (d) Counto's  model. 

x = 1 the equation reduces to Equation 10. This 
model was proposed for concrete systems to take 
into account the complex stress distribution in the 
individual phase. The empirical parameter x can be 
determined by curve fitting as illustrated in Fig. 3. 

2.2.4. The Takayanagi mode/  
Takayanagi et al. [19] combined Equations 10 and 11 
and proposed a series-parallel model (Fig. 5) 

( ~ (1 - ~))  1 
Ec = (1 -  )Em + + (17) 

where parameters ~ and fi represent the state of 
parallel and series coupling in the composite, respec- 
tively. Equation 17 was developed to predict the 
modulus of a crystalline polymer. The basic problem 
with the model is the determination of values for 
and/L 

Kraus and Rollmann [20] proposed an equivalent 
model for phase arrangements in a crystalline polymer. 
This model is particularly suitable for describing the 
performance of an interpenetrating network. 

The arrangement of the series and parallel element 
is, however, an inherent difficulty with all the preced- 
ing models. There are also conceptual difficulties in 
relating these models to real systems. 
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Figure 3 Relations between the modulus of fiIled resin and the 
volume fraction of  filler for the simplified models shown in Fig. 2. 
Curves 1 and 2 are for the series and parallel model, respectively. 
Curves 3 and 5 are from the Hirsch model (Equation 16) by taking 
x = 0.5 and x = 0.8, respectively. Curve 4 shows the Counto 
model (Equation 18). All the curves were calculated using 
E m - 3.9 GPa and Ep = 72.4 GPa. 
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Figure 4 Theoretical prediction o f  the composite modulus.  Curves 
1 and 2 show the law of mixture lower and upper bound, respectively. 
Curves 3 and 4 show the Hashin lower and upper bound, respectively. 
Curves 5 and 6 are the approximate solution of  the Ishai and Paul 
equations, respectively. All curves were calculated using E m = 
3.9 GPa and Ep = 72.4 GPa. 

2.2.5. The Counto model 
The simpler model, for a two-phase system proposed 
by Counto [21] assumes perfect bonding between the 
particle and the matrix. The modulus of the composite 
is given by 

1 _ 1 - Vp  I/2 + 1 (18) 
Ec E m (1 - -  Vpl/2)/Vpl/2E m "[- Ep 

This model predicts moduli in good agreement with a 
wide range of experimental data, especially for con- 
crete systems. It should be noted that when x takes a 
value of 0.5 in Equation 16 it coincides with the values 
predicted from Equation 18 (see Fig. 3). 

Using the same model, for uniform displacement at 
the boundary Ishai and Cohen [22] obtained the 
following equation 

Ec = Em 1 + m / ( m -  1 ) -  Vp 1/3 (20) 

in which m = Ep/Em. 

2.2.7. The C h o w  mode l  
For a system filled with non-spherical particles, the 
type and degree of orientation can completely modify 
the deformation behaviour. With oriented particles, 
the composite is anisotropic. Chow [23] included the 
anisotropy of the particles in the form of the aspect 
ratio p. 

The longitudinal Young's modulus for an ellip- 
soidal particle embedded in the matrix with major axis 
aligned along the direction of applied stress is 

( (Kp /Km- -  I ) A [ + 2 ( G p / G m - 1 ) B , )  
Ec = Em 1+ 2B, A3 + A,B3 

(21) 

In which 

A i = 1 + (Gp/Gm - 1)(1 '-- Vp)fli 
i = 1 , 3  

O i ~- 1 -q- ( K p / K  m - 1)(1 - Vp)~i 

where K and G are the bulk and the shear moduli, ~i 
and/~i are functions of aspect ratio p and Poisson's 
ratio of the matrix (see Appendix A for further details). 

Equation 21 reduces to the Kerner equation for 
spherical particles (p = 1) and as p ~ ~ Equation 
21 approaches the parallel model of the rule of 
mixtures. 

2.2.6. The Paul model 
For the approximate solution obtained by Paul [15], 
the constituents are assumed to be in a state of 
macroscopically homogeneous stress. Adhesion is 
assumed to be maintained at the interface of a cubic 
inclusion embedded in a cubic matrix. When a uni- 
form stress is applied at the boundary the elastic 
modulus of the composite is given by 

( 1 + ( m -  1)Vpz/3 ) (19) 
Ec = E m  1 + (m --- -1)-( V-~ ~ ~ Vp) 

[ 

I 
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I 
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Figure 5 The Takayanagi  model for a two-phase polymer system 
combining elements of  parallel and series models (m refers to matrix, 
p to filler)./3 is a function of  volume fraction of  the parallel element 
and cr of  the series element. 

2.2.8. The Cox model  
For an aligned short fibre composite, Cox [24] assumed 
that the load was transferred to the fibre from the 
surrounding matrix by a shear mechanism. Any ten- 
sile stresses in the matrix were neglected. The longi- 
tudinal Young's modulus of the composite is given by 

= E m ( 1 -  Vf)+ ErVf(1 tan_hZ)z E~ 

where (22) 
t(  2Gm )1,2 

z = ~ Erln(R/r) /  

l is the length, r the radius and 2R the centre-to-centre 
distance of the fibres. The filler shape was charac- 
terized by the aspect ratio, p = l/2r, where p >> 1. 
The elastic modulus of short aligned fibre composites 
can be predicted from the above equation. In a real 
composite system the fibres will usually be random, 
therefore an appropriate orientation factor would be 
needed for the application of Equation 22. 

3. L i m i t a t i o n s  o f  t h e  t h e o r e t i c a l  m o d e l s  
Having summarized the models available for the 
prediction of the moduli of a filled system, their appli- 
cability and limitatqons will be discussed. At this point 
it should be stressed that in the above survey no 
attempt has been made to discuss the approaches in 
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detail but to demonstrate the number of theoretical 
hypotheses available to describe the moduli of the 
filled system. For a discussion of the detailed theoreti- 
cal base of each the reader is referred to Hashin [25] 
and Hill [26]. 

The lower and upper bound solutions given by 
Equations 10 and 11 assume that the individual phases 
are under uniform strain or stress, respectively. In 
practice, however, the filler particles may not be Com- 
pletely separated from one another and the reinforce- 
ment element may, on the microlevel, effectively be an 
aggregate of smaller particles. Thus in response to the 
applied load the stress will be distributed unevenly 
between the particles and aggregates and the assump- 
tion of either uniform stress or uniform strain is clearly 
an oversimplification. To account for the complex 
stress and phase distribution, Hirsch t18], Takayanagi 
[19], Kraus [20], and Wu [27] considered differing 
combinations of the upper and lower bounds of the 
laws of mixtures. All of these require an empirical 
factor which is determined by a curve fitting routine, 
to furnish a phenomenological description of the 
experimental data. 

The theories which deal with filled systems indicate 
that the elastic modulus for a given particle and matrix 
depend only upon the volume fraction of filler and not 
the particle size, however, generally the modulus 
increases as the particle size decreases [9, 28-30]. 
Lewis and Nielsen [9] postulated that as the particle 
size decreases, the surface area increases providing a 
more efficient interfacial bond. This would also be 
accompanied by a tendency for increased agglomer- 
ation of the particles. 

The properties of the composites may also be 
affected by changes in particle shape. Bueche [31] 
observed that different filler shapes resulted in differ- 
ing mechanical properties. The effect was especially 
pronounced with larger or non-spherically shaped 
particles where a preferred orientation could modify 
the deformation behaviour. Wu [32] proved theoreti- 
cally that disc-shaped particles gave better reinforce- 
ment than, needle or spherical shaped particles but 
ignored the anisotropy associated with non-spherical 
particles in the composite. Chow [23] has dealt with 
this problem for aligned ellipsoidal particles and pre- 
dicted both longitudinal and transverse moduli. The 
effects of filler size and filler surface area were not 
taken into account, however, it is highly unlikely that 
in practice, the filler particles can be uniformly 
arranged in the manner assumed by Chow so that the 
experimental confirmation of both theories has yet to 
be established. 

The particle size distribution affects the maximum 
packing fraction ~b m; mixtures of particles with differ- 
ing size can pack more densely than monodispersed 
particles because the small ones can fill the interstitial 
space between the closely packed large particles to 
form an agglomerate. These aggregated particles may 
be able to carry a larger proportion of the load than 
the primary particles to yield a higher modulus, at the 
same volume fraction predicted by most theories. This 
effect is illustrated in Figs 6 and 7 where a differing 
reinforcing efficiency for glass beads compared to 
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Figure 6 Compar ison of  theoretical and experimental moduli  of  
graded glass bead composites taken from Ahmed  and Jones [34]. 
Curves 1 and 2 show the Hashin upper and lower bounds,  respect- 
ively and curve 3 the Paul approximation. All curves were calculated 
using E m = 3.9GPa,  v m = 0.39, Ep = 70GPa  and % = 0.22. 

irregularly shaped sand particles was observed by 
Ahmed and Jones [33, 34]. An empirical modification 
of the Kerner equation proposed by Lewis and Nielsen 
[9], introduced a curve fitting parameter q~m" A similarly 
modified Kerner equation which also included a filler 
interaction factor was proposed by Dickie [35]. Each 
of these equations appears to satisfactorily describe 
the data of the individual authors. One should note 
the comment by Christensen [36] on the Kerner equa- 
tion; that the explicit error in the Kerner equation 
cannot be "pinpointed because of the brevity of the 
derivation". This, therefore, casts doubt on the 
Kerner equation and its subsequent modifications. 
Recently McGee and McCullough [37] have formu- 
lated empirical rules for predicting the modulus of a 
filled system with a rigid or non-rigid matrix as the 
continuous phase. Their approach seems to be more 
reliable than the Kerner equation. A new approach to 
model the statistical distribution of the filler particles 
has recently been attempted by Guild and Young [38]. 
They applied the finite element technique to statisti- 
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Figure 7 Compar ison of theoretical and experimental data of  
Ahmed and Jones [33] for graded sand-filled polyester composite 
with the value of  E, predicted by various models. Curves 1 and 2 
show the Hashin upper and lower bounds,  respectively and curve 3 
the Paul approximation. Curve 4 shows the Mooney equation 
(Equation 3, S = 1.35 and v m = 0.39). All curves were calculated 
using E m = 3.9 GPa and Ep = 72.4 GPa. 
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cally distributed filler particles in a two-phase system. 
They found a good correlation between the predicted 
and the experimentally observed moduli for their 
glass-epoxy filled composites. Its application to a 
wider range of experimental data is, however, required 
to establish its full potential. 

Most of the theories which explain the reinforcing 
action of a filler assume perfect adhesion between the 
filler and the polymer matrix. The case of imperfect 
adhesion in the elastic case was, however, discussed 
theoretically by Sato and Furukawa [39]. They assumed 
that the non-bonded particles acted as holes and, 
therefore, predicted a decrease in modulus with 
increasing filler content. One can argue that the non- 
bonded particles do not act entirely as holes, since 
they also restrain the matrix from collapsing. In this 
case the modulus of the filled system should increase 
with increasing filler content, which is the general 
behaviour expected. A change of the matrix-filler 
adhesion has a smaller effect on modulus than on 
strength. The latter is much more dependent on sur- 
face pretreatment [28, 40, 41]. In fact, the degree of 
adhesion does not appear to be an important factor as 
long as the frictional forces between the phases are not 
exceeded by the applied stress. In most filled systems 
there is a mismatch in the coefficients of thermal 
expansion which is reflected as a mechanical bond 
resulting from thermally induced stresses. Brassell [42] 
found that the degree of bonding between the phases 
does not appear to have any influence on mechanical 
properties at liquid nitrogen temperature and this was 
attributed to the compressive stresses on the filler 
particle. In most cases even if the adhesion is poor, 
the theories are valid because there may not be any 
relative motion across the filler-matrix interface. 
Spanoudakis and Young [28] investigated glass filled 
epoxy resin and found that the best overall mechanical 
properties were obtained from composites containing 
particles treated with a coupling agent. 

It is clear from the foregoing discussion that the 
modulus of a filled system is a detailed function of the 
microstructure as well as the explicit nature of the 
interfacial adhesion. 

4. Comparison of experimental data 
with theory 

The theoretical curves predicted by the various models 
are compared in Fig. 4. The curves were obtained for 
a typical particulate filled thermosetting resin compo- 
site; Ep = 72.4 GPa, vv = 0.22, E m --  3.9, Vm = 0.39. 
The Hashin upper and lower bounds provided by 
Equations 13 and 14 (curves 3 and 4, respectively) are 
widely spaced and of limited predictive value, whereas 
the Paul estimation given by Equation 19 (curve 6) lies 
between the Hashin lower and upper bound, thus pro- 
viding an intermediate solution. At low Vp, the Hashin 
lower bound coincides with the Ishai estimation 
(curve 5). Above Vp = 0.5 the Ishai estimation 
predicts higher values of modulus than the Hashin 
lower bound. The ability of the various theoretical 
models to describe experimental data is illustrated 
with reference to the data of Spanoudakis and Young 
[281. 
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Figure 8 Comparison of theoretical and experimental data of  
Spanoudakis and Young [28] for glass-filled epoxy composite with 
the value ot 7 E, predicted by various models. Curves 1 and 2 are the 
Hashin upper and lower bounds, respectively. Curves 3 and 4 are 
the Ishai and Paul approximations, respectively. The predictions are 
based on the properties of the glass beads and the matrix, 
E m = 3.7GPa, v~ = 0.39, Ep = 70GPa, vp = 0.22. (A, 62#m 
treated, zx, untreated; e ,  4.5 #m treated, o,  untreated). 

In Fig. 8 the modulus of glass-filled epoxy compo- 
sites are compared with various theoretical predictions. 
The Hashin upper bound (curve 1) grossly overesti- 
mates the data, whereas the Paul equation (curve 4) 
overestimates the results to a lesser extent. The data 
fall on the curve predicted by the Hashin lower bound 
(curve 2) and Ishai estimation (curve 3). Clearly, it is 
hard to choose between Hashin and Ishai solutions. 

The appropriate theoretical solution is further com- 
plicated by the difficulty of incorporating the effect of 
particle size. It appears from the data in Fig. 8 that the 
larger particles are a more effective reinforcement, 
especially at higher volume fractions. Vollenberg and 
Heikens [30], however, observed that fine silica 
particles and chalk particles were more effective in the 
thermoplastic, polystyrene. They attempted to explain 
these results with the formation of a more dense 
matrix in the interfacial region. Moloney et al. [67] 
were, however, unable to observe a size effect for 
silica-filled epoxy resin. Similarly, Ahmed and Jones 
[34] were unable to observe differences between fine 
and coarse glass beads, in a thermosetting polyester 
resin. Their work did, however, demonstrate one of 
the deficiencies of these theories, namely the formation 
of agglomerates. As shown in Fig. 6, grading the 
spherical particles yielded only a slight improvement 
whereas as shown in Fig. 7 grading the angular par- 
ticles gave a much bigger improvement to the modulus 
of the composite. Agglomeration is an important 
aspect of particulate reinforcement of elastomers. As 
discussed in Section 2.1 the Mooney equation gives a 
good prediction of this reinforcing effect and by use of 
a crowding factor is able to differentiate between dif- 
ferent grades of carbon black. As seen in Fig. 7, the 
Mooney equation does not apply to filled rigid thermo- 
setting resins. One of the reasons why a fully embracing 
theory has not been developed, can also be gained 
from the work on sand-filled resin [33] where it was 
shown that the thermal history had a strong influence 
on the modulus. This was attributed to the generation 



of thermal compressive stresses associated with local 
variations in particle volume fraction which arises 
from the agglomeration of graded angular particles. 
Thus an appropriate theoretical prediction will have 
to include the statistics of particle coalescence and its 
effect on the thermomechanical properties of the com- 
posite. In addition to this the possible formation of 
an interphase, either as a result of conformational 
changes in a linear polymer or the presence of a coup- 
ling agent [68], makes it clear that the approximate 
solutions of Ishai [22] and Paul [15] still have much 
value. The development of a statistical model along 
the lines of Guild and Young [38] may prove more 
appropriate. 

5. Strength of particulate composites 
As pointed out by Nielsen [43], the theories for the 
strength of filled systems is less developed than that 
for the moduli. Except for the case of filled rubber, 
there are severe limitations to current thinking. 

5.1. The S a h u - B r o u t m a n  mode l  
In the approach of Sahu and Broutman [44], they 
assumed that the composite fails when one element is 
fractured as a result of a stress concentration around 
the filler particle. It follows that the strength drops 
rapidly with the addition of small amounts of filler, 
and remains essentially at that level with further addi- 
tions. With this assumption, they used a finite element 
analysis to model the composite and correlated the 
results with the experimental strengths of a glass 
sphere filled thermosetting resin. The theoretical 
predictions did not give a good fit to the experimental 
data because the model neglects particle interactions. 
In addition the composites may not have failed as a 
result of the failure of the first element. 

5.2. The power law 
The second approach assumes that the strength of a 
particulate composite is determined by the effective 
available area of load bearing matrix due to the 
presence of the filler [45-49]. 

In the case of a poor bond between the matrix and 
the filler (i.e., no stress transfer), and the absence of a 
stress concentration at the particle-matrix interface, 
the strength is described by a power law 

O-co = O'mu(1 -- a g p )  (23) 

where ac~ and O'mu are the ultimate tensile strengths of 
the composite and the matrix, respectively, Vp the 
volume fraction of the filler and a and n constants 
depending on the assumed particle shape and arrange- 
ment in the model composite. 

Nielsen [45] has introduced a stress concentration 
factor, K with a suggested value of 0.5. For cubic 
particles embedded in a cubic matrix Equation 23 can 
be written as 

O'cu = O'mu ( 1  - -  gp 2]3) K (24) 

Nicolais and Narkis [48], considered a cubic matrix 
filled with uniformly dispersed spherical particles, 
where fracture was assumed to occur in the minimum 
cross-section of the continuous phase which was per- 

pendicular to the applied load. Equation 23 becomes 

O'cu = 0"mu(1 -- 1 . 2 1  gp 2/3) (25) 

Piggott and Leidner [50] argued that the uniform filler 
arrangement assumed in most models was unlikely in 
practice and proposed an empirical relationship 

O'cu = KO-mu - -  bVp (26) 

where K is a stress concentration factor and b a con- 
stant dependent upon the particle-matrix adhesion. 

Landon et aL [51] proposed a similar equation 

acu = amu(l - Vp) - k ( V p ) d  (27) 

where d is the average particle diameter and k the 
slope of the plot of tensile strength against mean 
particle diameter. 

5.3. The L e i d n e r - W o o d h a m s  e q u a t i o n  
A simpler but more elaborate approach has been devel- 
oped by Leidner et al. [52]. The model composite 
consisted of spherical particles embedded in an elastic 
matrix. In order to apply reinforcement theory [53] the 
particle size was approximated to a cylinder. In this 
way the stress distribution in the bead, at the breaking 
point could be determined. In the case of non-bonded 
particles, the stress transfer between the particle and 
the matrix was assumed to occur as a result of the 
combination of particle-matrix friction and residual 
compressive stresses which act upon the particle- 
matrix interface. In the case of well bonded particles 
the stress is transferred through shear mechanism. The 
maximum stress in the particle is, therefore, dependent 
upon the shear strength of the matrix and on the 
strength of particle-matrix bond. The ultimate tensile 
strength of the composite was taken simply as the 
sum of the maximum load carried by the matrix and 
the filler and given by 

acu = (aa + 0.83rm) + aaK(1 -- W )  (28) 

for good interfacial adhesion and 

~rcu = 0.83athc~Vp + kamu(1 - Vp) (29) 

in the case of no interracial adhesion, aa and amu 
are the strength of the interfacial bond and the ultimate 
strength of the matrix, respectively, rm the shear 
strength of the matrix, K the stress concentration 
factor, k a parameter which depends on the particle 
size, 0"th the thermal compressive stress acting on 
the boundary of the particle and a the coefficient of 
friction. 

There have been a number of attempts to correlate 
the strength of particulate-filled systems with the dia- 
meter of the particle, d. For example Hojo et al. 

[54, 55] have found that the strength of silica-filled 
epoxy decreases as the size of the particles increase 
following a relationship of the form 

O'cu = O'mu + k d  1/2 (30) 

where k is a constant and d is the mean particle 
diameter. 

6. Limitations of the theoretical models 
Particle size can greatly affect the tensile strength of 
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Figure 9 Comparison of  strength predicted from linear and power 
laws. Curve 1 shows the Neilsen equation with K = 1 (Equation 24). 
Curve 2 is from the Nicolais and Narkis equation (Equation 25). 
Curves 3 and 4 are for the Piggott equation (Equation 26) with 
K = 0.84, b = 1 and K = 0.8, b = 1.2, respectively. The value of 
K has been chosen to fit the linear portions of  curves 1 and 2. 

filled systems [49, 51, 52]. In general, the tensile 
strength increases With a decrease in particle size. The 
increase in interfacial area which provides a more 
effective interfacial bond is considered to be the most 
important factor. Particle size is also related to the 
flaw size dependence of the material. Goodier [56] has 
shown that the stress field near a particle is indepen- 
dent of the particle size. The volume of polymer that 
experiences a given stress concentration is, however, 
increased with increase in particle size; therefore the 
probability of finding a large flaw increases with 
increased particle size. 

The effect of interfacial adhesion on the strength 
can be rationalized in a similar fashion since a poor 
particle-matrix bond will act as an inherent flaw with 
the production of a cavity equal to its size. 

The shape of the inclusion is expected to play an 
important role in determining the strength of the filled 
system. Since, with a non-regularly shaped inclusion, 
the weakening is due to a high stress concentration 
coupled with a size effect, and with rounded cracks 
and inclusions the stress concentration is much less 
severe than for inclusions with sharp corners. 

The foregoing discussion clearly demonstrates that 
the models available for predicting strength would set 
an upper limit on the strength of the filled system. 
When predicting the strength of filled material by 
employing the power law, the choice of appropriate 
constants is governed by the particle shape and arrange- 
ment in the geometric model, in addition the stress con- 
centration will lower these values by an undetermined 
amount. 

On the other hand, in the Leidner and Woodhams 
analysis, the thermal stresses (ath) and particle-matrix 
bond strength (aa) are difficult to measure for real 
composites. At very low Vp, estimates of the thermal 
stresses can be made [57], but at high Vp the calcu- 
lations are complicated by the presence of neighbour- 
ing particles. Also, in real situations the filler particles 
rarely have uniform diameters presenting difficulties 
with the correct choice of values for use in Equations 
27, 29 and 30, therefore, these equations are of limited 
value. 
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Figure 10 Comparison of  the ratio of composite fracture strength to 
matrix strength, as a function of Vp. The upper bound (curve 1) is 
for a c = G m and the lower bound (curve 2) Nicolais and Narkis 
equation (Equation 25). The experimental data is for glass-epoxy 
filled composite [28]. (e ,  4.5/~m diameter particles with surface 
pretreatment, o untreated). 

7. C o m p a r i s o n  of  e x p e r i m e n t a l  d a t a  
w i t h  t h e o r y  

In Fig. 9, the strength predictions from the various 
theoretical approaches as a function of Vp are com- 
pared. It can be seen that Equation 26 (curves 3 and 
4) almost predicts identical values to a power law 
expression (curves 1 and 2), at volume fraction greater 
than 0.2. Linear equations such as Equations 26 and 
27 are ineffective in describing the data at low Vp, 
however, they may be considered as useful empirical 
equations for the use at intermediate to high volume 
fraction of filler. 

In Fig. 10, the relative strength of glass beads filled 
epoxy composite [28] is compared with Equation 25. 
The correlation is not so good because of the uncer- 
tainties which may arise as a result of the stress con- 
centration enhanced by poor particle-matrix adhe- 
sion, which cannot be quantified experimentally and is 
difficult to model theoretically. An alternative system 
would be a fracture mechanics approach. This has 
been reviewed elsewhere [58]. 

Although the addition of rigid brittle particles to a 
polymer matrix tends to cause a reduction in strength 
of the filled material, it is well established that crack 
propagation becomes more difficult in such materials 
[58]. Several possible mechanisms can be used to 
explain this phenomena. Firstly, the toughness may be 
increased by the filler particles diverting the crack and 
increasing the fracture surface area, however, the 
increase in fracture surface area is insufficient to 
account for the large rise in toughness. Secondly, in 
the case of some filled systems containing for example, 
metallic or rubber particles [59], the energy may be 
absorbed by the deformation of the filler. This is most 
unlikely with brittle particles. Thirdly, the increase in 
toughness may arise from the increased plastic defor- 
mation of the matrix. Fourthly, the toughening may 
occur by obstacle pinning of the crack causing the 
crack front to bow out between the particles. 

Lange and Radford [60] have discussed the above 
mechanisms. They suggested that the most likely 
mechanism is the interaction of a crack front with the 
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Figure 11 Various stages of crack-pinning mechanism in a rigid 
particulate-filled composite. 1. Approach, 2. Interaction and pin- 
ning, 3. Bow-out, 4, Coalescence, 5. Breakaway [58]. 

models have been developed to describe a particular 
set of experimental data, a fresh theoretical approach 
together with systematic experimental studies is 
required. 
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d!spersed phase, as illustrated in Fig. 11. During frac- 
ture, a moving crack front is momentarily pinned at a 
position of inhomogeneity within the matrix. This 
interaction leads to a bowing out of the crack front 
from the pinned positions, thus increasing its total 
length. On breaking away from the pinned position, 
the crack front creates characteristic steps on the frac- 
ture surface. These steps are formed by overlapping 
crack fronts as it bows out between the dispersed 
particles. 

On investigation of the effect of particle size on the 
fracture surface energy, Lange and Radford [69], 
Mallick and Broutman [61] and Broutman and Sahu 
[62] found an increase in fracture surface energy with 
increasing volume fraction up to a maximum at 
around 0.2. Above 0.2 the fracture surface energies 
decreased becoming independent of particle diameter 
for glass sphere filled brittle polymeric composites. 
These results were explained by assuming that the 
effectiveness of pinning is a function of overlapping 
stresses associated with the crack front as it moves 
between the dispersed particles. 

Fractographic studies have provided strong evi- 
dence for the crack pinning mechanism in particulate 
reinforced thermosetting polymers. Maxwell et aI. [63] 
pointed out that several factors impair the efficiency of 
the cracking pinning mechanism such as, crack tip 
blunting through localized shear yielding, and a poor 
particle-matrix adhesion. For the latter, Spanoudakis 
and Young [28, 64] showed that for a glass-epoxy 
system, the crack propagation path is strongly affected 
by the improvement in particle-matrix adhesion. With 
untreated particles the cracks propagated around the 
equator, but with particles treated with a coupling 
agent, the crack propagated through the matrix above 
or below the poles of the particles. They observed the 
highest fracture toughness for composites in which 
poor particle-matrix interfacial adhesion existed. 
They postulated that debonding helped crack initi- 
ation but hindered crack propagation since crack 
bifurcation and branching took place. The highest 
level of toughness was achieved with the introduction 
of rubber particles in particulate-filled polymer where 
simultaneous crack pinning and localized plastic 
deformation occurred [65]. 

Appendix A. The Chow equation 
For ellipsoid particles oriented along their major axis, 
the tensile modulus is given by 

E c = E m ( 1  + (Kp/Krn - 1)A, + 2(Gp/G~nl )Bl~  

2A3B~ ~- A---~3 "J 

(A1) 

where K and G are bulk modulus and shear modulus. 

B i = 1 + ( K p / K  m -- 1)(1 -- Vp)~ i 

A, = 1 + (Gv/G m - 1)(1 - Vp)fl~ 

The parameters ~ and fl are given by 

~, = 4~Q/3  - 2(2rc - I ) R  (A4) 

~3 = 4~Q/3  - 4 ( 1 -  ~z) R (A5) 

(4~ 4 ~ -  3 I )  
fl~ = ~_-p~ j Q -  4 ( I -  2rc)R (A6) 

in which p = axial ratio (c/a) 

= 

1 - p  2 J Q  

where 

and  
Q = 8~ 

i = 1 , 3  
(A2) 

(A3) 

+ (4re - I ) R  (A7) 

= ~  Vml 
(A8) 

v m is the Poisson's ratio of the matrix. For p < 1 

2rcp 
I = (1 - p2)3/i [cos-~P - p(1 - pZ)~/2] (A9) 

and for p > 1 

2rrp 
I - (p2 ~ 1)3/2 [p(p2 _ 1)1/2 _ cosh lp] (A10) 

When p ~ 1 

I = 4~z/3 (All)  

1 (1 + Vm~ 
~ = ~3 = ~ -- 3 \ 1 -  VmJ (A12) 

Vm / 

8. Conclusions 
The state of the interface between the particles and 
matrix, the distribution, size and shape of the filler 
particles, affect the macroscopic behaviour of particu- 
late filled composites, but they have not been satisfac- 
torily modelled, theoretically. The variety of sources 
of experimental data rule out a preferred model for the 
prediction of macroscopic behaviour. Since individual 
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